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Abstract: The Schwinger representation gives a systematic procedure for recasting large

N field theory amplitudes as integrals over closed string moduli space. This procedure has

recently been applied to a class of free field four point functions by Aharony, Komargod-

ski and Razamat, to study the leading terms in the putative worldsheet OPE. Here we

observe that the dictionary between Schwinger parameters and the cross ratio of the four

punctured sphere actually yields an explicit expression for the full worldsheet four point

correlator in many such cases. This expression has a suggestive form and obeys various

properties, such as crossing symmetry and mutual locality, expected of a correlator in a

two dimensional CFT. Therefore one may take this to be a candidate four point function

in a worldsheet description of closed strings on highly curved AdS5 × S5. The general

framework, that we develop for computing the relevant Strebel differentials, also admits a

systematic perturbation expansion which would be useful for studying more general four

point correlators.
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1. Introduction

One of the major hurdles, which repeatedly crops up, in the study of the AdS/CFT con-

jecture [1 – 3] is the lack of a complete worldsheet description of the closed string theory on

AdS5 × S5. The conventional RNS formulation is not of much use because of the presence

of RR flux in the background. The Green-Schwarz approach, on the other hand, has the

problem of requiring some kind of lightcone gauge fixing to make it tractable [4 – 6], which

in turn leads to subtleties in computing scattering amplitudes.There also exists a covariant

formulation of the worldsheet theory due to Berkovits [7, 8], but it has not been developed

to the stage where we can use it for comparisons with gauge theory calculations, specially

in the perturbative domain of weak ’tHooft coupling.1

1Many different approaches have been taken to study the string dual of the weakly coupled gauge theory.

For a light cone approach, see [9 – 14] For a string bit approach, see [15 – 18] and also from a discretised

worldsheet point of view [19 – 25]. See also [26 – 28].
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Perhaps, what these difficulties are pointing to, is that quantising the worldsheet the-

ory of strings in these backgrounds may be a bit like quantising Liouville theory (For a

review, see [29]). The path integral (as well as the operator) approach have yielded limited

information about Liouville theory. The most complete description, yet, has come from the

algebraic approach — the so-called conformal bootstrap. This came in the form of inspired

conjectures for the three point functions [30, 31]. It was then understood that the crossing

symmetry constraints on the structure constants, coming from four point functions, was

sufficent for a purely algebraic determination [32, 33].

In like manner, we could aim for a purely algebraic characterisation of the full world-

sheet CFT (with ghosts and/or other auxiliary fields) for AdS5 × S5. The four point

functions of this c = 0 CFT would then contain the information necessary to characterise

the theory. By factorising in different channels one can read off the structure constants

Cijk and the structure of the conformal blocks.

How can we obtain these four point functions of the worldsheet CFT, without much

knowledge about the sigma model? A concrete prescription to implement open-closed

string duality for large N gauge theories has been given in [34 – 37]. Essentially, one

recasts field theory correlation functions, in Schwinger parametrisation, as integrals over

the closed string moduli space of worldsheet correlators (see also [38 – 42] for some further

explorations). In particular, one can study the planar four point function of gauge invariant

operators in the free gauge theory (as a starting point for a perturbative expansion in the ’t

Hooft coupling λ). The prescription of [35, 37] enables one to rewrite the simple spacetime

answer as an integral over the cross ratio that parametrises the four punctured sphere.

The integrand is then a natural candidate2 for the four point function of the corresponding

vertex operators in the worldsheet CFT. It is, in fact, a nontrivial check of the proposal

that the integrand thus obtained (expressed in terms of the cross ratio) even satisfies all

the generic properties one might expect of a worldsheet correlator in a local 2d CFT. This

is certainly not guaranteed by the construction.

There is, however, a technical hurdle to be overcome in implementing and checking

this proposal. Generically, the change of variables between the Schwinger parameters and

the usual complex parameters on moduli space (such as the cross ratio, in the case of the

four punctured sphere) is given by a transcendental relation [37] which makes it hard to

obtain explicit expressions for the worldsheet correlator. Therefore one strategy is to look

at special correlators for which there is a simplification.

In [43] four point correlation functions of the form

Γ
(4)
{Ji}

(x1, x2, x3) = 〈TrΦJ1(x1)TrΦJ2(x2)TrΦJ3(x3)TrΦJ(0)〉 (1.1)

were considered (with J = J1 +J2 +J3 and Φ being an adjoint field under the U(N) gauge

group). In these cases, because of the simpler nature of the free field contractions it is

possible to be much more explicit. In fact, Aharony et. al [43] considered the contribution

2The answer given by this prescription is presumably that obtained by fixing the worldsheet diffeomor-

phisms to the locally flat metric given by the Strebel construction of the Riemann surface (see [37]). Of

course, one may always add total derivatives on moduli space to the answer obtained this way.
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to (1.1) from the Y shaped diagram of free field theory (See figure 7. of [43] ) and used

the change of variables to study the behavior of the candidate worldsheet correlator when

one of the punctures approaches another. In other words, they looked at the leading (and

next to leading) behaviour in the worldsheet OPE. They found that for both these terms

the behaviour was consistent with what might be expected of a worldsheet correlator in

a string theory. Though the worldsheet conformal weights h, h̄ could be individually half

integral, the difference (h − h̄) was an integer, at least to this order.

In this paper, we will develop a general method for obtaining the change of variables

from the Schwinger parameters of a generic free field four point function to the cross ratio η.

Since the dictionary between the Schwinger parameters and η is through Strebel quadratic

differentials on the four punctured sphere, we need to study the latter. Generically the

expressions will involve elliptic functions. However, as expected, things simplify for the

special class of Y shaped Feynman graphs studied by Aharony et.al. [43]. On taking a

particular limit, our method recovers their results. In fact, by working directly in terms of

the cross ratio η we are able to find a completely explicit expression for the corresponding

worldsheet correlator.

To relate to results for N = 4 Yang-Mills theory, we could study the analogue of (1.1)

which is

Γ̃
(4)
{Ji}

(x1, x2, x3) = 〈TrZJ1(x1)TrZJ2(x2)TrZJ3(x3)TrZ̄J(0)〉. (1.2)

Here and below X,Y,Z will denote the complex scalars in the three chiral multiplets of

N = 4 Yang-Mills theory. With J = J1+J2+J3, (1.2) is an example of a so-called extremal

correlator [44].3 In fact, these are a particularly interesting class of correlators to study

from the point of view of the AdS/CFT conjecture since they are not renormalised from

their free field value. This is a generalisation of the non-renormalisation theorem for three

point functions [47]. The Y shaped diagram is one of the contributions to this correlator

in the free theory and thus the expression we derive is of relevance for this case. However,

there are other diagrams that need to be taken into account as well, in evaluating the

complete worldsheet correlator.4

However, we can readily give examples of spacetime correlators which gets contribu-

tions in the free N = 4 Yang-Mills theory only from the Y shaped graph.

Γ
(4)
{Ji}

(x1, x2, x3) = 〈TrXJ1(x1)TrY J2(x2)TrZJ3(x3)Tr(X̄J1 Ȳ J2Z̄J3)(0)〉 (1.3)

The operators entering here are not all chiral primaries unlike in (1.2). The last operator

is an admixture of stringy and supergravity modes in the dual theory. We can use the

change of variables mentioned above to express this correlator as a worldsheet integral

Γ
(4)
{Ji}

(x1, x2, x3) =

∫

d2ηG
{Ji}
{xi}

(η, η̄). (1.4)

3There is a large amount of AdS/CFT literature on four point functions of various operators. See the

reviews [45, 46] for references.
4 We are grateful to O. Aharony, Z. Komargodski and S. Razamat for pointing this out to us. The

contribution of these additional diagrams are currently being evaluated [48].
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One of the results of this paper is that the above change of variables applied to this

amplitude yields an explicit expression for the candidate worldsheet correlator. G
{Ji}
{xi}

(η, η̄)

in (1.3)

G
{Ji}
{xi}

(η, η̄) = C(Ji)
(1 + |η| + |1 − η|) 1

2

|η||1 − η| ×

× (1−|η|+|1 − η|)J1−
1

2 (1+|η|−|1 − η|)J2−
1

2 (−1+|η|+|1 − η|)J3−
1

2

[x2
1(1−|η|+|1 − η|)+x2

2(1+|η|−|1 − η|)+x2
3(−1+|η|+|1 − η|)]J . (1.5)

If we are to make the identification

G
{Ji}
{xi}

(η, η̄) = 〈VJ1

x1
(0)VJ2

x2
(1)VJ3

x3
(∞)V̄{J}

x4=0(η, η̄)〉WS, (1.6)

with a worldsheet correlator of primary vertex operators, then an essential requirement is

that G
{Ji}
{xi}

(η, η̄) satisfy the crossing symmetry relations

GJ2J1J3J
x2x1x3

(1 − η, 1 − η̄) = GJ1J2J3J
x1x2x3

(η, η̄),

GJ3J2J1J
x3x2x1

(
1

η
,
1

η̄
) = |η|4GJ1J2J3J

x1x2x3
(η, η̄). (1.7)

As can be readily verified, G
{Ji}
{xi}

(η, η̄) in (1.5) satisfies these relations. It is also consistent

with locality as all the terms in the OPE (when η → 0)

G
{Ji}
{xi}

(η, η̄) =
∑

h,h̄

CJi,xi

h,h̄
ηhη̄h̄ (1.8)

have (h − h̄) integral, even though the weights can be individually half integral. This

generalises the results of [43], for the leading couple of terms, to all orders in the expansion.

The form of the correlator is also very suggestive with the dependence on |η| and

|1 − η| being what one might expect of a correlation function of local operators inserted

at 0, 1,∞ and η. As we will discuss in section 4, there is a relation of individual terms

in this expression to the four point correlators of spin fields. This raises the possibility

of understanding at least this class of correlators in an elementary way. It should be

mentioned that the procedure by which (1.5) is obtained, readily generalises to any other

correlator which gets a contribution from a Y shaped diagram. One can easily write the

corresponding worldsheet expression for any such gauge correlator in the N = 4 Yang-Mills

theory, For that matter, the theory need not even be supersymmetric.

We will also go ahead and consider a systematic perturbation expansion around the

limiting form of the Strebel differential we had employed in the above considerations. This

expansion would be relevant to studying correlators, more general than the one considered

above. The expansion is surprisingly non-trivial and needs to be done quite carefully. We

will give partially explicit expressions for the perturbed cross ratio in terms of the Strebel

lengths (which are identified with the Schwinger parameters). We will however postpone

an application of this procedure to studying more general worldsheet correlators for the

future.
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The organisation of this paper is as follows. In the next section we review some general

facts about Strebel differentials and in particular, the parametrisation of the differential

for the four punctured sphere. We will then give the general procedure for obtaining the

relation between the Schwinger parameters and the cross ratio. In section 3, we show

how this change of variables simplifies in a particular limit which corresponds to the Y

diagrams that contribute to the correlators defined above. We obtain the explicit relation

between the cross ratio and the Schwinger parameters (see (3.12)). Those who would like

to skip the various technicalities of Strebel differentials can directly go to (3.12). We use

this relation in section 4. to study the Schwinger parametrised form of the correlator (1.3).

We deduce the form (1.5) and comment on its various features as well as the clues it might

give us about the worldsheet theory. In section 5, we give an algorithm for performing

a systematic perturbation around the limiting differential of section 3. We obtain a well

defined expansion in terms of the Strebel lengths in certain limits. Section 6 is a brief

conclusion. Various appendices contain technical details that arise at different points in

the main text.

2. Strebel differentials and the four punctured sphere

2.1 Strebel differentials and Schwinger parameters

The precise recipe for obtaining the closed string correlators from the Schwinger repre-

sentation of the field theory amplitude is via a special kind of holomorphic quadratic

differential φ(z)dz2 on the corresponding closed string Riemann surface. The properties of

these Strebel differentials have been reviewed in [37, 43] and we refer the reader to these

papers and references therein.

Very briefly, Strebel differentials have double poles at n marked points (which will be

identified with closed string vertex operator insertions). There is a critical graph (of genus

g with n faces) associated to each such differential with each face of the critical graph

enclosing a double pole of the Strebel differential. The vertices of this graph are the zeroes

of the differential, with a vertex of valence k associated to a zero of order (k−2). The edges

of the graph are the so-called non-closed horizontal trajectories along which
√

φ(z)dz is

real. Therefore the Strebel lengths defined by

lr =

∫

er

√

φ(z)dz (2.1)

are real, where er is an edge connecting two zeroes of the differential.

As can be guessed from the identification of the poles (in each face) with vertex oper-

ator insertions, the dual to the critical graph is associated with the field theory Feynman

diagrams in the AdS/CFT correspondence. More precisely, the skeleton diagram [35], ob-

tained by gluing together homotopic Wick contractions in Feynman diagrams, is dual to

the critical graph [37]. Thus, for a Feynman diagram of genus g with n vertices, we need to

consider a Strebel differential on a Riemann surface of the same genus and with n marked

points. It is a theorem due to Strebel that given such a Riemann surface Σg,n ∈ Mg,n

together with n residues {pa} at the double poles, there is a unique Strebel differential. As

– 5 –
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a consequence, there is a one to one mapping between the (3g − 3 + n) complex moduli ηi

and n residues pa to the (6g − 6 + 3n) Strebel lengths lr. Summing over the inequivalent

skeleton graphs of genus g with n vertices, and varying the lengths of the edges then gives

a single cover of the decorated moduli space Mg,n × Rn
+

The proposal to implement open-closed duality is to identify the inverse Schwinger

times [37]

σr =
1

τr
= lr =

∫

er

√

φ(z, ηi, pa)dz. (2.2)

We use this to make a change of variables of the Schwinger integrand from the σr to the

complex moduli ηi (as well as the residues pa). Performing the integral over the {pa} ∈ Rn
+

leaves us with an integral over Mg,n parametrised by the usual complex moduli ηi. It is

the integrand here that we can take to be a candidate correlator of the worldsheet CFT.

2.2 Strebel differentials for the four-punctured sphere

Since we are interested in planar four point functions (in the free theory, to begin with) we

will look at the Strebel differentials on the four punctured sphere. This can always be put

in the following form

φ(z)dz2 = −C
(z2 − 1)(z2k2 − 1)

(z − z0)2(z − z1)2(z − z2)2(z − z3)2
dz2. (2.3)

Here we have chosen the double poles to be at at z0, z1, z2, z3 and used the freedom of

SL(2, C) transformations to put the zeros at ±1,±1/k. Both C and k are as yet unde-

termined complex contants. This parametrization of the Strebel differential assumes no

additional symmetries. By Strebel’s theorem, given the cross ratio η of the punctures and

the residues at the four punctures, the constants C and k as well as the locations of the

poles zi are determined. Below we will see how this happens.

The u-plane. From (2.3), we see that
∫

√

φ(z)dz would be most naturally expressed

in terms of elliptic functions. Therefore we introduce the auxiliary u-plane where the

doubly periodic properties of the differential
√

φ(z)dz are more manifest. With w2 =

(z2 − 1)(z2k2 − 1), we define the variable u to be

u =

∫ z

1

dz

w
. (2.4)

Upto a constant shift this is essentially the defining relation for the Jacobi elliptic function

sn(u) of modulus k. We have the relation

z = sn

(

u +
1

2
ω1

)

=
cn(u)

dn(u)
, (2.5)

where 2ω1 ≡ 4K(k) is one of the periods of sn(u) (with modulus k). Note that at u = 0,

z = sn(K) = 1 which fixes this integration constant. For future reference we note that the

second period of the sn(u) function is given by 2ω2 = 2iK ′(k). In other words, the torus

that the u-plane defines has periods (2ω1, 2ω2). In appendix A. we gather together some

basic facts (and notation) regarding elliptic functions which we will use.
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We can now write the differential
√

φ(z)dz in the u-plane5

√

φ(u)du = −i
√

Ck′4 sn2(u)
∏3

i=0(cn(u) − zidn(u))
du, (2.6)

where k′ =
√

1 − k2. We have used various shift identities for the Jacobi functions (A.6)

and the formulae for their derivatives (A.8) to arrive at this form. From (2.6), together

with the locations of zeroes and poles of the Jacobi elliptic functions, we can see that
√

φ(u) has double zeros at 0, ω1, ω2, ω1 + ω2 (modulo the double periodicity (2ω1, 2ω2)).

Furthermore from (2.6) it is easy to see that both ui and −ui (where cn(ui)/dn(ui) = zi;

i = 0 . . . 3) are simple poles of
√

φ(u) with residues

ri = −i
√

Ck′2 sn(ui)dn(ui)
∏

j 6=i(cn(ui) − zjdn(ui))
,

= −i
√

Ck′2 sn(ui)
∏3

k=0 dn(uk)
∏

j 6=i(cn(ui)dn(uj) − cn(uj)dn(ui))
. (2.7)

Note that these properties on the u-plane (double zeroes and simple poles) are not in

contradiction with the different behaviour on the z-plane since this auxiliary torus is a

branched cover of the original sphere.

We would like to determine the positions of the poles zi (or ui) and thus their cross

ratio, in terms of the ri. Either by writing the Strebel differential as

√

φ(u)du ∝
3

∑

i=0

ri
sn(ui)

dn(ui)2
dn(u)

cn(u) − zidn(u)
, (2.8)

and demanding that it have the right double zeroes or else from direct verification one has

the relations
∑

i

ri
1

sn(ui)
= 0,

∑

i

risn(ui) = 0,

∑

i

ri
cn(ui)dn(ui)

sn(ui)
= 0. (2.9)

In fact, if we substitute ri given in (2.7) into (2.9) then those three equations are equivalent

to the algebraic identities

∑

i

1
∏

j 6=i(zi − zj)
= 0,

∑

i

zi
∏

j 6=i(zi − zj)
= 0,

∑

i

z2
i

∏

j 6=i(zi − zj)
= 0, (2.10)

5By abuse of notation we will use the same symbol φ for the u-plane as in the z-plane, though the

functional form of φ is different in both cases.
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where zi = cn(ui)/dn(ui). In principle the equations (2.9) determine three of the four ui

in terms of the fourth, say u0, as well as the ri. To determine u0 we also need to know the

Strebel lengths between zeroes.

The Strebel lengths. The main reason to go to the u-plane is that it enables us carry

out the Strebel integrals between the zeroes. The two independent lengths can be taken to

be

a =

∫ ω1

0

√

φ(u)du (2.11)

and

b = −
∫ ω2

0

√

φ(u)du. (2.12)

To carry out these integrals it will be useful to use an alternative representation of the

Strebel differential in terms of the Weierstrass functions (see appendix A.)

√

φ(u)du = i
∑

i

ri (ζ(u + ui) − ζ(u − ui) − 2ζ(ui)) du. (2.13)

By the properties of ζ(u), we can see that this has simple poles at u = ±ui with residue ±ri.

It can also be verified (as shown in appendix B.) that this has the right double zeroes if the

relations (2.9) hold. From the uniqueness properties of elliptic functions this is sufficient

to conclude that (2.13) is the same as (2.6).

Using the fact that ζ(u) is the derivative of a quasiperiodic function, we can easily

evaluate the integrals in equations (2.11), (2.12) to obtain

a =
∑

i

ri [π − 2i(ζ(ui)ω1 − ζ(ω1)ui)] ,

b =
∑

i

ri [π + 2i(ζ(ui)ω2 − ζ(ω2)ui)] . (2.14)

For the future we will also record a useful linear combination of these two equations.

π
∑

i

riui = (πω1 + πω2)
∑

i

ri − aω2 − bω1, (2.15)

where we have used the Legendre relation 2(ω2ζ(ω1) − ω2ζ(ω2)) = iπ.

The strategy we will adopt is to assume one is given the residues ri and the Strebel

lengths a, b — these are after all linear combinations of Schwinger parameters. It is clear

from (2.9) we can eliminate all the poles u1, u2, u3 in terms of u0. Then from the two real

equations (2.14) we can, in principle, determine the pole u0 in terms of a, b, ri. Thus the

cross ratios of the poles zi = cnui

dnui

is determined in terms of ri and (a, b) as required. In

practice, this is a difficult task to carry out explicitly.

3. The Strebel differential for the Y diagram

Aharony et. al. [43] made the nice observation that the Strebel differential corresponding

to a Y shaped skeleton Feynman diagram is quite simple. Moreover, this simple differential

– 8 –
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exists for every point on the moduli space of the four punctured sphere. In other words,

as we vary the Schwinger parameters for the Y diagram, we cover the entire moduli space

and not just some subspace. In this section, we will look at this simple Strebel differential

from the point of view of the general framework outlined in the previous section. While

this is not necessary for obtaining the final result (3.12), which can be obtained by simpler

methods, the general framework will be useful in developing a systematic perturbation

expansion around this simple differential. For completeness, in appendix C., we will outline

the elementary way of obtaining the solution which is essentially equivalent to the way in

which it was solved in [43].

The simplification of the Y diagram is that the dual graph has three edges, one vertex

and four faces. In fact, the valency of the vertex is six corresponding to a fourth order

zero for the differential, as per the general properties mentioned in section 2.1. Therefore

instead of elliptic functions,
√

φ(z) is algebraic and we can easily solve for the Strebel

conditions [43] (See also appendix C.). The fourth order zero is clearly a limit of the

separated zeroes in a generic Strebel differential. How do we take this limit in the general

differential of the form (2.3)? Notice that if the poles zi =
z′
i

ε with z′i finite and ε → 0, then

it would be natural to make the scaling of the variable z = z′

ε in (2.3). In other words we

are taking a large z limit. This effectively makes all zeroes coincide in the z′ plane while

keeping the poles finite. Note that k is not being scaled with ε.

As mentioned in section 2, we use the equations (2.9), (2.14) and (2.15) to write the

cross ratio η on the world sheet in terms of the perimeters ri and the Strebel lengths

a, b. We now combine this with a systematic expansion scheme in ε. The strategy of the

approximation scheme is to first perform a Taylor series expansion of (2.9), (2.14), (2.15)

about the specific point ū in the u-plane, which corresponds to large z. Then we can solve

for η order by order in a series expansion in ε.

Solving for u in terms of z, using the change of variables in (2.4), we can set up the

following asymptotic expansion

u =

∫ ∞

1

dz

w
−

∫ ∞

z′

ε

dz

w
,

= ū − ε

kz′
− 1

6k

(

1 +
1

k2

)

ε3

z′3
+ · · · . (3.1)

Here we have expanded the integrand in ε and integrated term by term, showing terms

upto O(ε3) for future purposes. In (3.1) ū is given by

ū =

∫ ∞

1

dz
√

(z2 − 1)(z2k2 − 1)
,

=
ω1

2
+ ω2. (3.2)

The easiest way to fix ū is to look at the equation for z in terms of ū for large z. From (3.1)

this is given by

z ∼ − 1

k(u − ū)
. (3.3)
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This indicates that ū is a pole with residue − 1
k . The fact that z = sn(u + ω1/2), and that

sn(u) has a pole with residue −1/k at ω1 + ω2 (see table 1) fixes ū = ω1/2 + ω2.

To perform the large z expansion in (2.9) we need to write sn(ui), cn(ui),dn(ui) in

terms of the asymptotic expansion in 1/zi around the point ū. This is done in appendix D,

and from (D.3), we can read off the leading terms which are relevant for us in this section.

3
∑

i=0

ri = 0,
3

∑

i=0

rixi = 0,
3

∑

i=0

rix
2
i = 0. (3.4)

Here xi ≡ 1
z′
i

are finite as ε → 0. As can be seen from the scaling of φ(z) with ε or as we

will see explicitly in section 5, the equations (2.14) and (2.15) for the Strebel lengths a and

b can also be expanded in powers of ε. The leading nonzero terms are of O(ε3). So for the

leading order solution of the Strebel conditions, we will not need these equations.

Therefore we have only the leading order equations in (3.4) to solve. In terms of

xi = yi + x0, we can easily verify that (3.4) simplifies to

r0 + r1 + r2 + r3 = 0,

r1y1 + r2y2 + r3y3 = 0,

r1y
2
1 + r2y

2
2 + r3y

2
3 = 0. (3.5)

In other words, the translational mode x0 drops out of these equations. Note that the first

equation is a constraint among the perimeters (residues) of the Strebel differential. The

object of interest to us, the cross ratio of the poles

η =
(z3 − z2)(z1 − z0)

(z1 − z2)(z3 − z0)
=

y1(y3 − y2)

y3(y1 − y2)
. (3.6)

depends only the ratio of the y’s (and is also independent of x0). In fact, defining

w1 =
y1

y3
, w2 =

y2

y3
, (3.7)

the cross ratio (3.6) is simply

η = w1
1 − w2

w1 − w2
, (3.8)

We can solve for w1, w2 using the last two equations of (3.5). Eliminating w2 in favour of

w1 using the second equation in (3.5) and substituting it into the third equation yields

r1(r1 + r2)w
2
1 + 2r1r3w1 + r3(r3 + r2) = 0. (3.9)

We have

w1 =
y1

y3
=

−r1r3 ±
√

r1r2r3r0

r1(r1 + r2)
, (3.10)

and as a result

w2 =
y2

y3
=

−r2r3 ∓
√

r1r2r3r0

r2(r1 + r2)
. (3.11)

To connect with the positive Strebel lengths, we will take r0 = −p0 < 0 and ri = pi for

(i = 1, 2, 3). This reflects the fact that p0 = p1+p2+p3 is the relation among the perimeters

for the dual graph to the Y diagram.
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Then, on substituting the values for w1 and w2 into (3.8) we obtain, after some sim-

plifications

η =

(√
p0p2 ± i

√
p1p3

p1 + p2

)2

. (3.12)

Note that this zeroth order solution did not require knowledge of the modulus k. In

appendix C. we obtain this result in an elementary fashion and show how it is equivalent

to the solution obtained in [43]. Without loss of generality, we can take the plus sign

in (3.12), since the other choice is just the complex conjugate.

4. A worldsheet four point function

What we saw in the previous section is that for a Y shaped skeleton Feynman

diagram the Strebel differential is particularly simple. Aharony et. al. [43] ex-

ploited this property to study the contribution from the Y diagram to the correlator

〈TrΦJ1(x1)TrΦJ2(x2)TrΦJ3(x3)TrΦJ(0)〉 in free field theory (J = J1 + J2 + J3). As men-

tioned in the introduction, here we will instead study the correlator

Γ
(4)
{Ji}

(x1, x2, x3) = 〈TrXJ1(x1)TrY J2(x2)TrZJ3(x3)Tr(X̄J1 Ȳ J2Z̄J3)(0)〉, (4.1)

since it gets contributions only from the Y diagram (see footnote 4) in the free theory. The

answer in the free field theory is, of course, simply

〈TrXJ1(x1)TrY J2(x2)TrZJ3(x3)Tr(X̄J1 Ȳ J2Z̄J3)(0)〉 =
C̃(Ji)

x2J1

1 x2J2

2 x2J3

3

. (4.2)

In the position space Schwinger representation, we can write this as

〈TrXJ1(x1)TrY J2(x2)TrZJ3(x3)Tr(X̄J1 Ȳ J2Z̄J3)(0)〉
= C(Ji)

∫ ∞

0
dσ1dσ2dσ3σ

J1−1
1 σJ2−1

2 σJ3−1
3 e−(σ1x2

1
+σ2x2

2
+σ3x2

3
). (4.3)

We now need to change variables from the three σi to η and an overall scaling factor, to

be able to write (4.2) as a closed string integral. The three σi are identified as per [37] with

the three independent Strebel lengths corresponding to the dual graph. They are, in fact,

the three independent residues at the poles 0, 1 and ∞ of the Strebel differential in (2.3).

σi = pi, (i = 1, 2, 3). (4.4)

We saw that the complex cross ratio η is given by (3.12) to be

η =

(√
p0p2 + i

√
p1p3

p1 + p2

)2

, (4.5)

with p0 = p1 + p2 + p3. Notice that η actually depends only on the two independent ratios

s1 = p1

p3
= σ1

σ3
and s2 = p2

p3
= σ2

σ3

η =

(√
s0s2 + i

√
s1

s1 + s2

)2

, (4.6)
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with s0 = p0

p3
= 1 + s1 + s2.

We can solve (4.6) for s1 and s2 in terms of η. Firstly, it is easy to check that with

η = |η|eiθ, we have

|η| =
1 + s2

s1 + s2
, 1 − cos θ =

2s1

(1 + s2)(s1 + s2)
. (4.7)

Therefore

|1 − η| =
1 + s1

s1 + s2
, (4.8)

so that one has

s1 =
(1 − |η| + |1 − η|)

(−1 + |η| + |1 − η|) , (4.9)

and

s2 =
(1 + |η| − |1 − η|)

(−1 + |η| + |1 − η|) . (4.10)

Finally,

s0 = 1 + s1 + s2 =
(1 + |η| + |1 − η|)

(−1 + |η| + |1 − η|) . (4.11)

Coming back to (4.3), we can write it as

Γ
(4)
{Ji}

(xi) = C(Ji)

∫ ∞

0
dσ3σ

J−1
3

∫

ds1ds2s
J1−1
1 sJ2−1

2 e−σ3(s1x2

1
+s2x2

2
+x2

3
)

= (J − 1)!C(Ji)

∫

ds1ds2
sJ1−1
1 sJ2−1

2

(s1x
2
1 + s2x

2
2 + x2

3)
J
. (4.12)

Note that J = J1 + J2 + J3. The measure term

ds1ds2 = J(η, η̄)d2η (4.13)

where the Jacobian can be explicitly worked out, using (4.9) (4.10), to be

J(η, η̄) =
1

D3

|η − η̄|
|η||1 − η| , (4.14)

with D = (−1 + |η| + |1 − η|). Using the identity

|η − η̄| = [(1 + |η|+ |1− η|)(1− |η|+ |1− η|)(1 + |η| − |1− η|)(−1 + |η|+ |1− η|)]
1

2 , (4.15)

and equations (4.9), (4.10) we can finally rewrite (4.12) as

Γ
(4)
{Ji}

(xi) ≡
∫

d2ηG
{Ji}
{xi}

(η, η̄)

=

∫

d2η
(1 + |η| + |1 − η|) 1

2

|η||1 − η| ×

(1−|η|+|1 − η|)J1−
1

2 (1+|η|−|1 − η|)J2−
1

2 (−1+|η|+|1 − η|)J3−
1

2

[x2
1(1−|η|+|1 − η|)+x2

2(1+|η|−|1 − η|)+x2
3(−1+|η|+|1 − η|)]J .(4.16)
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We thus obtain the expression (1.5) for the integrand G
{Ji}
{xi}

(η, η̄) on the moduli space of

the four punctured sphere.

As mentioned in the introduction, for G
{Ji}
{xi}

(η, η̄) to be interpretable as a worldsheet

four point function of physical vertex operators (1.6), a number of requirements on its form

have to be satisfied. The simplest is that of crossing symmetry.

GJ2J1J3J
x2x1x3

(1 − η, 1 − η̄) = GJ1J2J3J
x1x2x3

(η, η̄),

GJ3J2J1J
x3x2x1

(
1

η
,
1

η̄
) = |η|4GJ1J2J3J

x1x2x3
(η, η̄). (4.17)

The weight |η|4 in the second line is the same as the requirement that VJ in (1.6) is a

(1, 1) vertex operator on the worldsheet. Note that the crossing symmetry requirement is

not just a consequence of SL(2, C) invariance, but also of the fact that there is an addi-

tional permutation symmetry among the labels when we consider a correlator of primary

operators. This is reflected in the fact that the functional form of the correlator G
{Ji}
{xi}

is

unchanged in eqs. (4.17).

It is a nice feature of the change of variables we have used that crossing symmetry

is built in. We can indeed check that the change of variables in equations (4.9)(4.10)

implements the permutation symmetry between the labels (1, 2, 3) in the way we expect.6

Therefore it is assured that the G
{Ji}
{xi}

(η, η̄) will satisfy the requirements of (4.17). This is,

in fact, easy to verify explicitly from the expression (1.5).

Another requirement for a CFT correlator in a string theory is having an OPE con-

sistent with locality. In other words, in the expansion (1.8) in powers ηhη̄h̄, the correlator

must have (h− h̄) always an integer. In [43] the form of the correlator was given to the first

couple of orders in a somewhat different variable t (which is to leading order the same as η)

and it was found that the powers obeyed this property, though h, h̄ could be individually

half integers. From the explicit expression in (4.16), this is actually manifest to all orders

in the expansion for the G
{Ji}
{xi}

(η, η̄).

Finally, we would like to be able to see if G
{Ji}
{xi}

(η, η̄) actually arises as the correlator

of local vertex operators. The fairly simple dependence of G
{Ji}
{xi}

(η, η̄) on |η| and |1− η| are

indicative of local dependence on the points 0, 1,∞ and η. Indeed, as was pointed out to

us by D. Gaiotto, the expressions that enter here are very closely related to similar ones in

the four point functions of spin fields in the Ising model.

For instance, the correlator of four order operators σ(z, z̄) (see equation (12.63) of [49])

is given by

〈σ(1)σ(2)σ(3)σ(4)〉 =

√

1

2|z13z14|
1

2

1
√

|η||1 − η|
(1 + |η| + |1 − η|) 1

2 . (4.18)

and that of two order and two disorder operators ( equation (12.66) in [49]) is

〈σ(1)µ(2)σ(3)µ(4)〉 =

√

1

2|z13z14|
1

2

1
√

|η||1 − η|
(−1 + |η| + |1 − η|) 1

2 . (4.19)

6We thank A. Sen for useful discussions on this point.
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By permuting the ordering of the operators in (4.19), we get the last factor proportional

in turn to (1 − |η| + |1 − η|) 1

2 and (1 + |η| − |1 − η|) 1

2 . These are exactly the ingredients

that enter into the correlator defined by (4.16). Thus it is not far fetched to imagine that

the entire expression in (4.16) might arise as a local correlator in a CFT. Since the spin

field correlators seem like building blocks for the actual object that appears here, It would

be very interesting to use them to try and reconstruct the worldsheet CFT, at least in an

algebraic way. For instance, knowing the conformal blocks of the Ising model, we can try

and decompose our candidate correlator into candidate conformal blocks.

Another potentially interesting connection suggested by the appearance of Ising model

correlation functions is to W -strings (see [50 – 52] for reviews). Ising model correlation

function are known to appear in the four point scattering amplitudes of W3 strings [53].7,8

This maybe a natural connection given the fact that the free gauge theory has higher spin

symmetries in spacetime which might well be reflected as higher spin symmetries on the

worldsheet in the usual manner by which spacetime and worldsheet symmetries are related.

In any case, we believe there is enough reason to take G
{Ji}
{xi}

(η, η̄) seriously as a can-

didate four point function in the as yet unknown worldsheet theory of AdS5 × S5 dual to

free N = 4 Yang-Mills theory.

5. A perturbation scheme around the Y diagram

In this section we develop a systematic approximation scheme around the Y diagram. This

will be relevant for studying the most general skeleton diagram for free field four point

functions, which is in the shape of a tetrahedron. We use the equations (2.9), (2.14)

and (2.15) to write the cross ratio on the world sheet in terms of the perimeters ri and

the Strebel lengths a, b. As we have seen in section 3, the Y diagram corresponds to the

large z limit of the general Strebel differential given in (2.3). In the u-plane, this point

corresponds to ū = ω1/2 + ω2. In section 3. we have already used the leading terms in

the expansion to obtain the solution shown in (3.12). We now retain the first two leading

terms in the equations (D.3) and the Strebel length equations (2.14), (2.15) to obtain the

leading correction in ε to the cross-ratio. From (D.3) we see that the three conditions on

the poles (2.9) in this approximation reduce to

3
∑

i=0

ri − ε4Ẽ

3
∑

i=0

rix
4
i = 0,

3
∑

i=0

rixi − ε2E

3
∑

i=0

rix
3
i = 0,

3
∑

i=0

rix
2
i − ε2E

3
∑

i=0

rix
4
i = 0. (5.1)

where

Ẽ = −(1 − k2)2

8k4
, E = −1

2

(

1 +
1

k2

)

. (5.2)

7We thank Ari Pakman for bringing this reference to our attention.
8The Ising model has also arisen in Spin(7) compactifications [54].
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It is clear from the expansions that we have retained terms only to O(ε4).

The next set of equations to expand are (2.14) and (2.15). We expand the variables

ui occurring in these equations about ū in terms of xi and performing simple algebraic

manipulations (see appendix D. for details) we obtain the following equivalent equations

valid up to O(ε4)

a = ε3p1

∑

rix
3
i + ε4p2

∑

rix
4
i ,

aω2 + bω1 = ε3q1

∑

rix
3
i + ε4q2

∑

rix
4
i , (5.3)

where p1, q1, p2, q2 are constants depending on the value of ū, as given in (D.6), (D.8)(D.10).

For our purpose here, it is sufficient to provide the following information about the constants

which are valid to the O(ε0)

p
(0)
1

q
(0)
1

= 2i

(

1 − 10k2 + k4

12
ϑ2

3(q) +
1

12

1

ϑ2
3(q)

ϑ′′′
1 (q)

ϑ′
1(q)

)

,

q
(0)
1 = − π

3k

(

1 +
1

k2

)

,

ω1 = πϑ2
3(q),

q = exp

(

2πi
ω1

ω2

)

. (5.4)

The periods (2ω1, 2ω2) of the auxilliary torus in the u plane are functions of the modulus

k, they are all O(ε0). In the above equation the superscript (0) refer to the order in ε. It is

clear from (5.3) that the Strebel lengths a and b begin at O(ε3). This fact can also be seen

easily by performing the scaling z = z′/ε in the equation for the Strebel differential (2.3).

We can therefore expand the Strebel lengths as

a = a(3)ε3 + a(4)ε4 + . . . , b = b(3)ε3 + b(4)ε4 + . . . . (5.5)

For convenience we define

c =
∑

rix
3
i , c̃ =

∑

rix
4
i , (5.6)

From (5.3) it is clear that c, c′ begins at O(ε0). Now comparing terms of order O(ε3) in the

first equation of (5.3) we obtain the following relation

c(0) =
∑

rix
(0)3
i =

a(3)

p
(0)
1

. (5.7)

Furthermore, comparing the terms of O(ε3) in both the equations and eliminating c from

them we obtain
p
(0)
1

q
(0)
1

(a(3)ω
(0)
2 + b(3)ω

(0)
1 ) = a(3). (5.8)

It is this equation which determines k in terms of a(3) and b(3). One substitutes the values

of ω1 and ω2 in terms of k, uses (5.4) and then solves for k using the above equation. This is
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done in appendix E. From now on, we assume that k = k(a, b), and similarly ω1 = ω1(a, b)

and ω2 = ω2(a, b) since each of them are functions of k. Note that k starts at O(ε0).

Now that we have the basic equations (5.1), (5.3) and (5.8) we can organize them

so that one can solve for the xi using perturbation theory. To isolate the translational

degree of freedom in the variables xi we first write x1 = y1 +x0, x2 = y2 +x0, x3 = y3 +x0.

Therefore the variables to solve for are now y1, y2, y3, x0. Then the equations (5.1) and (5.6)

reduce to

3
∑

i=1

ri = ε4Ẽc̃,

3
∑

i=1

riyi + ε4Ẽc̃x0 = ε2Ec,

3
∑

i=1

riy
2
i + 2ε2Ecx0 − ε4Ẽc̃x2

0 = ε2Ec̃,

3
∑

i=1

riy
3
i + 3ε2Ec̃x0 − 3ε2Ecx2

0 + ε4Ẽc̃x3
0 = c,

3
∑

i=1

riy
4
i + 4cx0 − 6ε2Ec̃x2

0 + 4ε2Ecx3
0 − ε4Ẽc̃x4

0 = c̃. (5.9)

To obtain these equations we have repeatedly used the basic equations (5.1) and (5.6).

Note that the first equation in (5.9) determines the constant c̃ since the perimeters ri are

given to us. The first equation indicates the constraint
∑3

i=0 ri = 0 holds till O(ε4). The

constant c is determined from (5.7) and finally the constants E and Ẽ are defined in (5.2).

As mentioned earlier, the modulus k is determined as a function of a, b from (5.8). To

summarize, (5.9) can be solved using perturbation theory for the variables y1, y2, y3, x0 in

terms of the perimeters ri and the Strebel lengths a, b. We can obtain the cross ratio from

the equation (3.8).

We now set about to solve the above equations and obtaining the leading correction.

From the first two equations in (5.9) we see that the next non-trivial correction to the

cross ratio occurs at O(ε2). These equations determine the ratios w1 = y1/y3, w2 = y2/y3

to O(ε2)

r1w1 + r2w2 + r3 = ε2 Ec(0)

y
(0)
3

,

r1w
2
1 + r2w

2
2 + r3 + 2ε2Ec(0) x

(0)
0

y
(0)2
3

= ε2 Ec̃(0)

y
(0)2
3

. (5.10)

These equations indicate that we need to need the information of y3 and x0 at the zeroth

order. This is obtained from using the last two equations of (5.9) at the zeroth order, these

are

3
∑

i=1

riy
3
i = c(0),

3
∑

i=1

riy
4
i + 4c(0)x0 = c̃(0). (5.11)
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Substituting the zeroth order values of y1, y2 in terms of ri and y3 in the above equation

we obtain

y
(0)
3 =

(

c(0)r1r2(r1 + r2)
2

r3{r1r2r3(r0 − r3) ± (r2 − r1)
√

r1r2r3r0}

)1/3

, (5.12)

where c(0) is obtained from (5.7). Similarly from the second equation in (5.11) we can

obtain x0 as

x
(0)
0 =

c̃(0)

4c(0)
− (y

(0
3 )4

4c(0)

(

r3r0

r1r2(r1 + r2)3

)

× (5.13)

{

r1r2(r0r3 − r2
0 − 4r2

3) + r3r0(r1 + r2)
2 ± 4r3(r2 − r1)

√
r1r2r3r0

}

.

Here one has to substitute y3 from (5.12), c from (5.7) and c̃ from the first line of (5.9)

c̃(0) =
∑

r
(4)
i /Ẽ. (5.14)

Now that we have all the quantities entering into (5.10), we can solve for w1 and w2. For

convenience we rewrite (5.10) as

r1w1 + r2w2 = −r3 − ε2δ1,

r1w
2
1 + r2w

2
2 = −r3 − ε2δ2, (5.15)

where

δ1 = −Ec(0)

y
(0)
3

, δ2 = − E

y
(0)2
3

(c̃(0) − 2c(0)x
(0)
0 ). (5.16)

Eliminating w2 using the first equation of (5.15) in the second equation we obtain the

following quadriatic equation where we have retained terms to O(ε2).

r1(r1 + r2)w
2
1 + (2r1r3 + 2ε2r1δ1)w1 + r3(r3 + r2) + r2ε

2δ2 + 2r3ε
2δ1 = 0. (5.17)

The solution for w1 and w1 are given by

w1 =− 1

r1(r1+r2)

[

r1r3±
√

r1r2r3r0+ε2

(

r1δ1±
√

r1r2r3r0

(

− δ1

r0
+

(

1

r3
+

1

r0

)

δ2

2

))]

,

w2 =− 1

r2(r1+r2)

[

r2r3∓
√

r1r2r3r0+ε2

(

r2δ1∓
√

r1r2r3r0

(

− δ1

r0
+

(

1

r3
+

1

r0

)

δ2

2

))]

(5.18)

From this we can evaluate the cross-ratio using (3.8), which is given by

η± = η
(0)
± +ε2

√
p2p0±i

√
p1p3

(p1+p2)2

(

δ1

(
√

p2

p0
±i

√

p1

p3

)

+κ

(√
p2p0±i

√
p1p3

))

−ε2κη
(0)
±

whereκ − δ1

r0
+

(

1

r3
+

1

r0

)

δ2

2
. (5.19)

Here η
(0)
± is the zeroth order solution for the cross ratio given in (3.12). Thus we have

obtained the leading correction away from the results of the Y diagram. As mentioned

earlier, we expect that this perturbation expansion will be useful in understanding more

general four point functions.
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6. Conclusions

We have seen that we can arrive at explicit expressions for candidate worldsheet correlators,

in the string dual to free Yang-Mills theory by using a definite change of variables on the

Schwinger representation of field theory amplitudes. These candidates seem quite promising

in that they obey many of the properties one might expect of them. Moreover, their form

seems to suggest ways of potentially gaining a better understanding of the worldsheet

theory. The relation with the spin field correlators might be a fruitful way to both uncover

the structure of conformal blocks and maybe even give some clues about the worldsheet

action. One point that needs better understanding here is the fact that the spacetime

special conformal transformations do not act locally in this Schwinger representation [43].

Perhaps for the cases of spacetime conformal invariance, we can modify the prescription to

make this symmetry manifest on the worldsheet as well.

It will also be important to have at hand a large number of explicitly worked out

correlators. The case of extremal correlators is particularly interesting, affording a way to

potentially compare with large radius intuition as well as methods. There are also other

special four point diagrams which, as observed in [43], seem to get contributions only from

real subspaces of moduli space. It would be good to get a better grasp of what is going on

here by comparing with cases such as the Y diagram which yield local expressions on the

worldsheet.

To summarise, we are hopeful that this approach to obtaining the worldsheet theory

will be fruitful, like in the Liouville case, in effectively bypassing an action formulation of

the theory and yet capturing all the essential information.
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A. Elliptic functions

In this section we briefly review the properties of elliptic functions which are used exten-

sively in this paper. A detailed discussion is available in [55]
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Function Periods Poles Residues Zeros

snu (2ω1, 2ω2) ω2
1
k 0

ω1 + ω2 − 1
k ω1

cnu (2ω1, ω1 + 2ω2) ω2 − i
k

ω1

2

ω1 + ω2
i
k

3ω1

2

dnu (ω1, 4ω2) ω2 −i ω1

2 + ω2

3ω2 i ω1

2 + 3ω2

Table 1: General description of the Jacobian elliptic functions.

The Jacobian elliptic functions. The elliptic function snu is defined as follows, con-

sider the integral

u =

∫ z

0
dt(1 − t2)−

1

2 (1 − k2t2)−
1

2 , (A.1)

then z = sn(u, k), we will supress the modulus k unless different. The complementary

modulus k′ is defined by k2 + k′2 = 1 The elliptic functions cn(u) and dn(u) are defined

from

sn2u + cn2u = 1, k2sn2u + dn2u = 1. (A.2)

The periods K and iK ′ of the elliptic functions are defined by the integrals

K =

∫ 1

0
dt(1 − t2)−

1

2 (1 − k2t2)−
1

2 , (A.3)

where the integral is along the straight line from 0 to 1. K ′ is given by

K ′ =

∫ 1/k

1
dt(t2 − 1)−

1

2 (1 − k2t2)−
1

2 , (A.4)

here the branch cuts are chosen from 0 to −∞ and 1 to ∞. We define the periods ω1 and

ω2 by

ω1 = 2K, ω2 = iK ′. (A.5)

Note that K,K ′ and therefore ω1, ω2 are functions of the modulus k through the inte-

grals (A.3) and (A.4). From (A.1) it is easy to see that snu is an odd function of u. The

elliptic functions cnu and dnu are even functions of u. In the table below we summarize

the information about the periods, the poles and the respective residues and the zeros of

the corresponding elliptic functions.

The elliptic functions have the following shift properties.

sn
(

u +
ω1

2

)

=
cnu

dnu
, cn

(

u +
ω1

2

)

= −k′ snu

dnu
, dn

(

u +
ω1

2

)

= k′ 1

dnu
. (A.6)

We also need the following shift properties of the Jacobian elliptic functions

sn(u + ω1) = −sn(u), cn(u + ω1) = −cn(u), dn(u + ω1) = dn(u),

sn(u + ω2) = 1
ksn(u) , cn(u + ω2) = −i dn(u)

ksn(u) , dn(u + ω2) = −i cn(u)
sn(u) ,

sn(u + ω3) = − 1
ksn(u) , cn(u + ω3) = i dn(u)

ksn(u) , dn(u + ω3) = −i cn(u)
sn(u) .

(A.7)
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where ω3 = ω1 + ω2. The derivatives of the elliptic functions are given by

d

du
snu = cnudnu,

d

du
cnu = −snudnu,

d

du
dnu = −k2snucnu (A.8)

The Weierstrass ℘ function and related functions. The Weierstrass function can

be defined by the following expansion

℘(z) =
1

z2
+

∑

m,n 6=0

(

1

(z − 2mω1 − 2nω2)2
− 1

(2mω1 − 2nω2)2

)

. (A.9)

It is an even function with periods (2ω1, 2ω2). The derivatives of the ℘ function vanish at

the following points

℘′(ω1) = 0, ℘′(ω2) = 0, ℘′(ω1 + ω2) = 0. (A.10)

The Weierstrass ℘ function can be thought of as building blocks of elliptic functions since

any elliptic function of period (2ω1, 2ω2) can be expresses in terms of the ℘ function of the

same period. The expression is rational in ℘(z) and linear in ℘′(z).

Related to the Weierstrass function is the function ζ(z) which is defined as

dζ(z)

dz
= −℘(z). (A.11)

The ζ(z) function is an odd function of z, it is quasi-periodic in the periods ω1 and ω2 with

the quasi periods defined as

ζ(z + 2ω1) = ζ(z) + 2η1, ζ(z + 2ω2) = ζ(z) + 2η2, (A.12)

where η1 and η2 are given by

η1 = ζ(ω1), η2 = ζ(ω2). (A.13)

They satisfy the Legendre relation

2(η1ω2 − η2ω1) = πi (A.14)

Since the ζ(z) function is the integral of the ℘ function it is clear that it has a simple pole

at the origin z = 0 with residue 1. Finally we define the function σ(z) by the equation

d

dz
log σ(z) = ζ(z). (A.15)

The σ(z) functions is an odd function in z, it is useful for integration of the ζ(z) function

and we use it to perform the Strebel integrations. It satisfies the following quasi-periodic

relations

σ(z + 2ω1) = −e2η1(z+ω1)σ(z), σ(z + 2ω2) = −e2η2(z+ω2)σ(z). (A.16)
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Relationship between elliptic functions and Weierstrass ℘ function. In this pa-

per we extensively use the relationship between the Weierstrass ℘ function and the Jacobian

elliptic function sn(u). As mentioned earlier, any doubly periodic function of periods 2ω1

and 2ω2 can always be written in terms of the Weierstrass ℘-function having the same

periodicity. This is given by

sn
(

u +
ω1

2

)

= 1 +
1

2

k2 − 1

(℘(u) − 5k2−1
12 )

. (A.17)

Here we have used the theorm of uniformisation of curves of genus unity given in [55], page

454. The above equation is easily verified for u = 0. There is another relation one can

obtain using the ℘ function and the Jacobian elliptic function. Let the values of the ℘ at

half the periods be given by

℘(ω1) = e1, ℘(ω2) = e2, ℘(ω3) = e3. (A.18)

where ω3 = ω1 + ω2. Then from (A.17) it can be shown that

e1 =
1 + k2

6
, e2 = −1 − 6k + k2

12
, e3 = −1 + 6k + k2

12
. (A.19)

We then have the following relation between the ℘ function and the sn function.

℘(u) = e3 +
e1 − e3

sn2(u
√

e1 − e3, k̃)
. (A.20)

Here note that the ℘ function is doubly periodic with periods (2ω1, 2ω2), and the modulus

of the sn(u) function is given by

k̃ =

√

e2 − e3

e1 − e3
= 2

√
k

1 + k
. (A.21)

B. Strebel differential in terms of Weierstrass functions

In this section we will write the general Strebel differential given in (2.3) in two convenient

forms. One involves Weierstrass ℘ functions and the second involves the ζ(u) function. The

former is useful to obtain relations between the poles of the Strebel differential and the

perimeters while the latter is useful to perform the Strebel integration in (2.11) and (2.12).
√

φ(u) in terms of ℘-function. It is useful to write the differential
√

φ(u)du in terms of

the Weierstrass ℘ function for the purpose of obtaining the Strebel lengths by integration as

well as to obtain relations between the poles of the Strebel differential and the perimeters.

To do this we take the view that we are given the residues ri at the poles ui of the

differential
√

φ(u) in (2.6). It is clear from the transformation between the z-plane to

the u-plane given in (2.5), that the differential
√

φ(u) is a doubly periodic function of

periods (2ω1, 2ω2). Then the unique doubly periodic function of periods (2ω1, 2ω2) with

the residues ±ri at ±ui and a double zero at u = 0 is given by

√

φ(u) = i
3

∑

i=0

ri
℘′(ui)

℘(u) − ℘(ui)
. (B.1)
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We also have that the above function must have double zeros at ω1, ω2 and ω1 + ω2.

Demanding that the function in (B.1) has zeros at these points gives the following conditions

3
∑

i=0

ri
℘′(ui)

℘(ω1) − ℘(ui)
= 0,

3
∑

i=0

ri
℘′(ui)

℘(ω2) − ℘(ui)
= 0,

3
∑

i=0

ri
℘′(ui)

℘(ω3) − ℘(ui)
= 0. (B.2)

where ω3 = ω1 + ω2. It is clear that the derivative of the function
√

φ(u) given in (B.1) at

the points ω1, ω2, ω3 vanishes since ℘′(ωi) = 0. The equations (B.2) together with the fact

that the derivative of the function
√

φ(u) vanishes at the points ω1, ω2, ω3 ensures that

the representation of the Strebel differential in terms of the ℘ function in (B.1) has double

zeros at these points. The three equations in (B.2) enables one to determine the position

of the poles u1, u2, u3. in terms of u0 and the residues ri.

Conditions on zeros Using the indentity (A.20) one can cast the equations in (B.2)

entirely in terms of the Jacobian elliptic functions. From (A.20) we can obtain the following

useful identities

℘′(u)

℘(ω3) − ℘(u)
= 2

√
e1 − e3

cn(u
√

e1 − e3, k̃)dn(u
√

e1 − e3, k̃)

sn(u
√

e1 − e3, k̃)
,

℘′(u)

℘(ω1) − ℘(u)
= 2

√
e1 − e3

dn(u
√

e1 − e3, k̃)

cn(u
√

e1 − e3, k̃)sn(u
√

e1 − e3, k̃)
,

℘′(u)

℘(ω2) − ℘(u)
= 2

√
e1 − e3

cn(u
√

e1 − e3, k̃)

dn(u
√

e1 − e3, k̃)sn(u
√

e1 − e3, k̃)
. (B.3)

Substituting the above identities in (B.2) it is easy to show using simple manipulations and

indentities involving Jacobian elliptic functions, that the conditions reduce to the following

three equations

∑

i

ri
dn(2u

√
e1 − e3, k̃)

sn(2u
√

e1 − e3, k̃)
= 0,

∑

i

ri
cn(2u

√
e1 − e3, k̃)

sn(2u
√

e1 − e3, k̃)
= 0,

∑

i

ri
1

sn(2u
√

e1 − e3, k̃)
= 0. (B.4)

We now use the following Landen transformations [55] to convert the Jacobi Elliptic func-
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tions with modulus k̃ to that with modulus k.

sn((1 + k)u, k̃) = (1 + k)
sn(u, k)

1 + ksn2(u, k)
,

cn((1 + k)u, k̃) =
cn(u, k)dn(u, k)

1 + ksn2(u, k)
,

dn((1 + k)u, k̃) =
1 − ksn2(u, k)

1 + ksn2(u, k)
. (B.5)

Note that the argument involving u which occurs in (B.4) is 2u
√

e1 − e3 = (1 + k)u.

Substituting the above transformations in (B.4) and after some simple manipulations we

obtain the following equivalent conditions which enable us to determine u1, u2, u3 in terms

of u0 and ri.

∑

i

ri
1

sn(ui)
= 0,

∑

i

risn(ui) = 0,

∑

i

ri
cn(ui)dn(ui)

sn(ui)
= 0. (B.6)

As a simple consistency check we can show that the residues given in (2.7) satisfy the

equations (B.6). Substituting the values of ri in (B.6) and after a few manipulations, the

three set of equations reduce to

∑

i

1
∏

j 6=i(zi − zj)
= 0,

∑

i

zi
∏

j 6=i(zi − zj)
= 0,

∑

i

z2
i

∏

j 6=i(zi − zj)
= 0, (B.7)

here zi = cn(ui)/dn(ui). It can be shown by simple algebra that the above set of equations

are identities for any set of z′is. Thus we have verified the conditions for the zeros (B.6)

The Strebel differential in terms of the the ζ(u) function and the Strebel lengths.

We now show that the Strebel differential
√

φ(u)du can also be written in terms of the ζ(u)

function. This allows one to perform the Strebel integral and obtain the Strebel lengths.

From (B.1) we see that Strebel differential is expressed as a linear combination of the

function

iri
℘′(ui)

℘(u) − ℘(ui)
. (B.8)

This is periodic function with periods (2ω1, 2ω2), with double zeros at the origin u = 0 and

poles at u = ±ui with residues ±ri. From the properties of the ζ(u) function we see that

the function in (B.8) can be written as

iri
℘′(ui)

℘(u) − ℘(ui)
= iri(ζ(u + ui) − ζ(u − ui) − 2ζ(ui)). (B.9)
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We now show the above indentity is true by matching the singularity structure on both

sides of the equation. Firstly, from (A.12) we see that the right hand side of the above

equation is also periodic with periods (2ω1, 2ω2). Since the function ζ(u) has a simple

pole at u = 0 with residue 1, the above combination of ζ functions has simple poles at

u = ±ui with residues ±ri. Furthermore ζ(u) is an even function, which implies both sides

of the equation vanish at u = 0.Finally, since the derivative of the ζ(u) function is the

℘(u) function which is even in u, the derivative of the right hand side vanishes at u = 0.

implying u = 0 is a double zero. This establishes the indentity in (B.9). Substituting (B.9)

in (B.1) we obtain

√

φ(u)du = i
∑

i

ri(ζ(u + ui) − ζ(u − ui) − 2ζ(ui))du. (B.10)

To perform the Strebel integrals in (2.11) and (2.12) we write the above equation in terms

of the σ functions using (A.15). This gives

√

φ(u)du = i
∑

i

ri

(

d

du
log σ(u + ui) −

d

du
log σ(u − ui) − 2ζ(ui)

)

du. (B.11)

It is now easy to perform the integrals from 0 to ω1 and 0 to ω2 giving

a =
∑

i

ri[π − 2i(ζ(ui)ω1 − ζ(ω1)ui)],

b =
∑

i

ri[π + 2i(ζ(ui)ω2 − ζ(ω2)ui)]. (B.12)

Here we have used the quasi-periodic relations of the σ(u) function given in (A.16).

The case of equal perimeters The case of equal perimeters r0 = r1 = r2 = r3 = r

has been studied in [56]. Here we show that we can solve the conditions on the zeros (B.6)

easily when the perimeters are equal, and the equations for the Stebel lengths (B.12) reduce

to the equations found by [56]. For the case of equal perimeters the conditions on the zeros

reduce to
∑

i

1

sn(ui)
= 0,

∑

i

sn(ui) = 0,
∑

i

cn(ui)dn(ui)

sn(ui)
= 0. (B.13)

These conditions are satisfied by the choice

u0, u1 = u0 + ω1, u2 = u0 + ω2, u3 = u0 + ω3. (B.14)

Subtituting these values of ui in the conditions (B.13), it is easily seen that they are satisfied

using the properties in (A.7). Writing out the Strebel differential
√

φ(u) using the above

solution for ui we obtain

√

φ(u)du = ir

(

℘′(u0)

℘(u) − ℘(u0)
+

℘′(u0 + ω1)

℘(u) − ℘(u0 + ω1)

+
℘′(u0 + ω2)

℘(u) − ℘(u0 + ω2)
+

℘′(u0 + ω3)

℘(u) − ℘(u0 + ω3)

)

. (B.15)
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It is clear from the above expression that the Strebel differential for this case has a pe-

riodicity with smaller periods (ω1, ω2) as found in [56] Using this fact we can rewrite the

differential in terms of the Weierstrass ℘ function with smaller periods, this leads to the

following expression
√

φ(u)du = ir

(

℘̃(u0)

℘̃(u) − ℘̃(u0)

)

, (B.16)

here ℘̃(u) is the Weierstrass function with periods (ω1, ω2). From the above expression one

can proceed with the remaining analysis to obtain the Strebel lengths a, b as discussed here

to obtain the equations for the Strebel lengths found by [56].

C. The elementary derivation of equation (3.12)

A Strebel differential with a fourth order zero can be written as

φ(z)dz2 = C
(z − z0)

4dz2

z2(z − 1)2(z − η)2
, (C.1)

where we have chosen to put the poles at 0, 1,∞ and η using SL(2, C) invariance. Labelling

the positive residues at these poles as (p1, p2, p3) and p0 respectively, we see that

p1

p3
= −z2

0

η

p2

p3
= −(z0 − 1)2

1 − η
. (C.2)

We also have p0 = p1 + p2 + p3. We can eliminate z0 from the two equations in (C.2)

getting the quadratic equation for η

(p1 + p2)η + 2
√−p1p3

√
η − (p2 + p3). (C.3)

The solution to this quadratic equation gives

√
η =

(√
p0p2 ± i

√
p1p3

p1 + p2

)

, (C.4)

which is the same as (3.12)

To connect with the expressions in [43] for extremal correlators, we need to take p0 =

pt, p1 = p−t, p2 = p∞, p3 = p1, where the p’s on the left hand side are ours and those on

the right are theirs. Their quantity t is related to η by

η =
(t − (−t))(1 −∞)

(t − 1)(−t −∞)
=

2t

t − 1
. (C.5)

According to [43] the quadratic equation which determines t is given by

t2(4 + B2 + 4A) + 2t(2B + AB) + A2 = 0

where A =
p−t

p∞
− pt

p∞
, B =

pt

p∞
+

p−t

p∞
(C.6)

Subtituting for t in terms of η in the above quadriatic equation we obtain the following

equation for η

(p∞ + p−t)η
2 − 2η(p∞pt − p1p−t) + (pt − p−t)

2 = 0 (C.7)

The two solutions of this equation are given in (3.12) after making the above identifications.
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D. Details on the approximation scheme

In this appendix we provide the details leading to the equations (5.1) and (5.3) which are

the basic equations to obtain a perturbation scheme around the Y-diagram.

We start out with the conditions on the zeros given in (2.9) and perform a large z

expansion of these equations. As shown in (3.3) large z corresponds to expansion aroudn

ū = ω1/2+ω2. From the definition of z = cnu/dnu in (2.5) and using the identities in (A.2)

we can obtain the following large z expansion of the Jacobian elliptic functions

snu =
1

k

(

1 +
1

2

(

1

k2
− 1

)

ε2

z′2
+

(

3

8k4
− 1

4k2
− 1

8

)

ε4

z′4
+ · · ·

)

,

cnu =

√
k2 − 1

k

(

1 +
ε2

2k2z′2
+

3ε4

8k4z′4
+ · · ·

)

,

dnu =
ε

z′
cnu,

cnudnu

snu
=

1

k

(

(k2 − 1)
ε

z′
+

(

k2

2
− 1

2k2

)

ε3

z′3
+ · · ·

)

, (D.1)

here we have substituted z = z′/ε with z′ finite to organize the expansion in powers of ε.

Substituting these expansions for the Jacobian elliptic functions that occur in the conditions

for the zeros (2.9) with z′i = 1/xi we obtain

3
∑

i=0

ri

(

1 − 1

2

(

1

k2
− 1

)

ε2x2
i +

( −1

8k4
− 1

4k2
+

3

8

)

ε4x4
i + · · ·

)

= 0,

3
∑

i=0

ri

(

1 +
1

2

(

1

k2
− 1

)

ε2x2
i +

(

3

8k4
− 1

4k2
− 1

8

)

ε4x4
i + · · ·

)

= 0,

3
∑

i=0

ri

(

(k2 − 1)εxi +
1

2k2
(k4 − 1)ε3x3

i

)

= 0. (D.2)

Adding and subtracting the first two equations and simplifying the third equation we obtain

3
∑

i=0

ri +

3
∑

i=0

ri(1 − k2)2
ε4x4

i

8k4
= 0,

3
∑

i=0

ri

(

x2
i +

1

2

(

1 +
1

k2

)

ε2x4
i

)

= 0,

3
∑

i=0

ri

(

xi +
1

2

(

1 +
1

k2

)

ε2x3
i

)

= 0. (D.3)

Note that we have retained only the leading two terms in each of the equation. The above

equations are the leading conditions on the positions of the zeros which now correspond to

xi. For later convenience we define the following quantities

Ẽ = −(1 − k2)2

8k4
, E = −1

2

(

1 +
1

k2

)

. (D.4)
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We now find the leading expansions of the equation for the Strebel length a in (2.14)

and the linear combination of lengths in (2.14) around ū. Expanding the equation for the

Strebel length a around ū we obtain

a = A0

∑

ri + εA1

∑

rixi + ε2A2

∑

rix
2
i + ε3A3

∑

rix
3
i + ε4A4

∑

rix
4
i , (D.5)

where

A0 = π − 2i(ζ(ū)ω1 − ζ(ω1)ū),

A1 =
2i

k
(ζ(1)(ū)ω1 − ζ(ω1)),

A2 = − 2i

2!k2
ζ(2)(ū)ω1,

A3 = 2i(ζ(1)(ū)ω1 − ζ(ω1))
1

6k

(

1 +
1

k2

)

+
2i

3!k3
ζ(3)(ū)ω1,

A4 = − i

3k2

(

1 +
1

k2

)

ζ(2)(ū)ω1 −
2i

4!k4
ζ(4)(ū)ω1. (D.6)

here the summations
∑

runs from 0 to 3, and

ζ(n)(ū) =
dn

dun
ζ(u)

∣

∣

∣

∣

u=ū

. (D.7)

To obtain the above expansion for a we have performed a taylor series expansion of the

equation for the Strebel length a in (2.14) about the point ū and then substituted for ui

in terms of xi using (3.1). Note that all the coefficients An start at O(ε0). Performing a

similar expansion in (2.15) and retaining terms till order ε4 we obtain

aω2 + bω1 = B0

∑

ri + εB1

∑

rixi + ε3B3

∑

rix
3
i ,

with B0 = π
ω1

2
, B1 =

π

k
, B3 =

π

6k

(

1 +
1

k2

)

. (D.8)

Here again the Bn’s start of at O(ε0). We now can eliminate the combination
∑

ri,
∑

rixi

and
∑

rix
2
i using (D.3) in (D.5) and (D.8) to obtain the following pairs of equations for

the Strebel lengths a and b

a = ε3p1

∑

rix
3
i + ε4p2

∑

rix
4
i ,

aω2 + bω1 = ε3q1

∑

rix
3
i + ε4q2

∑

rix
4
i . (D.9)

with
p1 = A1E + A3, p2 = A0Ẽ + A2E + A4,

q1 = B1E + B3, q2 = B0Ẽ.
(D.10)

From (D.9) it is clear that the Strebel lengths a, b begin at O(ε3). This fact can also be

easily verified by performing the scaling z = z′/ε in the basic equation for the Strebel

differential (2.3).

From the discussion in section 5, we see that among the constants in (D.10) the relevant

quantity is the ratio p1/q1. Here we evaluate this ratio, from the definition of p1 in terms
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of A1 and A3 we see that we we first need to evaluate the derivatives ζ(1)(ū) and ζ(3)(ū).

Using the defintion of ζ in (A.11), we have

ζ(1)(u) = −℘(u),

=
1 − 5k2

12
+

1 − k2

2

dnu

cnu − dnu
, (D.11)

here we have used (A.17) to re-write the Weierstrass ℘ function in terms of the elliptic

functions. From table 1. we see that the elliptic function dn(u) vanishes at ū = ω1/2 + ω2,

therefore we obtain

ζ(1)(ū) =
1 − 5k2

12
. (D.12)

Differentiating (D.11) twice we obtain

ζ(3)(u) =
(1 − k2)2

2

dnu(1 + sn2u) − cnu(1 + k2sn2u)

(cnu − dnu)3
, (D.13)

again since dn(ū) = 0 we get

ζ(3)(ū) = −(1 − k2)2(1 + k2sn2ū)

2cn2ū
,

= (1 − k2)k2, (D.14)

where we have substituted the values of the Jacobi elliptic functions at ū from (A.6) and

table 1. Now we can evaluate the ratio p1/q1, using the defintions (D.10), (D.6) and (5.2)

and the equations (D.12) and (D.14) we see that

p1

q1
=

2i

π

(

1 − 10k2 + k4

12
ω1 − ζ(ω1)

)

,

= 2i

(

1 − 10k2 + k4

12
ϑ2

3(q) +
1

12

1

ϑ2
3(q)

ϑ′′′
1 (q)

ϑ′
1(q)

)

. (D.15)

To obtain the second line in the above equation we have used the relations [55]

ω1 = πϑ2
3(q), ζ(ω1) = − π2

12ω1

ϑ′′′
1 (q)

ϑ′
1(q)

. (D.16)

In all these equations q = exp(2πiω2/ω1), which implies

ω2

ω1
=

1

2πi
log(q). (D.17)

Finally, the modulus k can also be written in terms of q by the following equation [55]

k =
ϑ2

2(q)

ϑ2
3(q)

. (D.18)
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E. Solution for the modulus k in terms of the Strebel lengths.

In this section we solve the following equation modulus k in terms of the Strebel lengths

a(3) and b(3).
ω1p1

q1

(

ω2

ω1
+

1

ρ

)

= 1. (E.1)

The above equation is basically a simple re-writing of the equation (5.8). From now on we

drop the superscript (0) which indicates the zeroth order terms, ρ = a(3)/b(3). The strategy

we use is to first write all the quantities that occur in the above equation in terms of the

modular parameter q in (D.17), use (E.1) to solve for q in terms of the ratio of Strebel

lengths ρ and then write k in terms of ρ using (D.18). Since the functions involved in

the equation (E.1) are transcendental in q, we need to perform an expansion in q to solve

for q in terms of q. This assumes that |q| < 1, and for this expansion to be consistent it

will turn out that ρ < 1. Substituting the expansions of the theta functions that occur

in (D.15), (D.16) and (D.18) we obtain the following expansion

ω1p1

q1
= 2πi(−14q + 260q2 − 6200q3 + 143368q4 + · · ·). (E.2)

Using this expansion in (E.1) we obtain

ρ =
ω1p1

q1

(

1 − ω1p1

q1

log q

2πi

)−1

,

= −28iπq + 392πiq2 log q + 520πiq2 + · · · . (E.3)

We can now invert this equation and obtain q in terms of ρ, which is given by

q =
i

28π
ρ − 1

56π2
ρ2 log ρ − 1

2749π2

(

65 − 49 log(28π) + i
π

2

)

ρ2 + · · · . (E.4)

It is clear from this solution it is consistent to assume |q| < 1. From this the leading order

solution to the modulus k in terms of the ratio ρ is given by

k =
2e

iπ

4√
7π

√
ρ (1 + O(ρ log(ρ))) . (E.5)

It is clear from the approach that one can obtain the solution of k in terms of ρ to any

accuracy that is desired.
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